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1 Introduction 
This document summarizes the research conducted on the AFOSR-supported 
project "Search Control for Automatic Plan Generation", Contract F49620-96- 
1-0403 during the period between Aug, 1,1996 and Jan. 31,1998 (18 months). 
The goal of the project has been to. analyze the effectiveness of alternative 
search control strategics for automatic plan generation and to investigate the 
interactions between search control strategies and other aspects of the planning 
architecture. Our efforts were focused on developing strategics for: 

• search control in partial-order causal-link planning; 

• search control in conditional planning; 

• monitor-establishment in dynamic planning, with an emphasis on the 
interaction between monitoring and the efficiency of planning. 

In addition, early in the project we completed some relevant work that had 
been begun prior to the project start-date, involving search control for planners 
operating in domains in which actions have explicit costs associated with them. 

This report is organized around these topics. We briefly describe the work 
we did on each of these topics, followed by a list of project-sponsored publi- 
cations, which provide more details of the work. Copiee of these publications 
are included as an appendix to this report. 

2 Search Control for Partial-Order Causal Link 
Planning 

Much of the current research in plan generation centers on partial-order causal 
link (POCL) algorithms, which descend from McAllester and Rosenblitt's [9] 
SNLP algorithm. POCL planning involves searching through a space of partial 
plans, where the successors of a node representing partial plan P are refine- 
ments of P. As with any search problem, POCL planning requires effective 
search control strategies. 

In POCL planning, search control has two components.  The first, node, 
selection^ involves choosing which partial plan to refine next. Once a partial 
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plan has been selected for refinement, the planner must then perform flaw se- 
lection, which involves choosing either a threat to resolve or an open condition 
to establish. 

Over the past few years, several studies have compared the relative ef- 
ficiency of alternative flaw selection strategies for POCL planning and their 
extensions [11,8,13, 6,18]. These studies have been motivated at least in part 
by a tension between the attractive formal properties of the POCL algorithms, 
and the limitations in putting them to practical use that result from their rel- 
atively poor performance. To date, the POCL algorithms cannot match the 
efficiency of the eo-called industrial-strength planners such as SIPE [16, 17] 
and O-Plan [4,14]. Flaw selection strategy has been shown to have a signifi- 
cant effect on the efficiency of POCL planning algorithms, and thus researchers 
have viewed the design of improved flaw selection strategics a6 one means of 
making POCL planning algorithms more practical. 

In the current project, we completed an extensive experimental study of the 
relative performance of the main control strategies that have been proposed 
in the prior literature for partial-order causal^link planning. Our results are 
presented in [12], in which we review the literature on flaw selection strategies, 
and present new experimental results that generalize the earlier work and ex- 
plain some of the discrepancies in it. In particular, we describe the Least-Cost 
Flaw Repair (LCFR) strategy developed and analyzed by Joslin and Pollack 
[8]j and compare it with other strategies, including Gerevini and Schubert's 
ZLIFO strategy [6]. LCFR and ZLIFO make very different, and apparently 
conflicting claims about the most effective way to reduce search-space size in 
POCL planning. We resolve this conflict, arguing that much of the benefit 
that Gerevini and Schubert ascribe to the LIFO component of their ZLIFO 
strategy is better attributed to other causes. 

More specifically, we showed that neither the LCFR nor ZLIFO flaw selec- 
tion strategy consistently generates smaller search spaces, but that by com- 
bining LCFR's least-cost approach with the delay of separable threats that is 
included in the ZLIFO strategy, we obtain a strategy—LCFR-DSep -whose 
space performance was nearly always as good as the better of LCFR or ZLIFO 
on a given problem. We therefore concluded that much of ZLIFO's advantage 
relative to LCFR is due to its delay of separable threats rather than to its 
use of a LIFO strategy. Although we were unable to resolve the question of 
whether least-cost selection i6 required for unforced, as well as forced flaws, 
we found no evidence that a LIFO strategy for unforced flaws was better. On 
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the other hand, separable-threat delay is clearly advantageous. 
We also considered the question of computation time, and showed that of- 

ten LCFR-DSep only requires computation time comparable to that of ZLIFO. 
LCFR-DSep can therefore be seen as paying for its own computational over- 
head by its search-space reduction. 

Those conclusion, however, are tempered by the fact that for certain clus- 
ters of problems, our combined strategy, LCFR-DSep, does not generate min- 
imal search spaces. In sum, as a result of our experiments we now understand 
the reasons that LCFR and ZLIFO perform the way they do, and how to 
combine the best features of both to create good default strategies for POCL 
planning. At the flame time, it is clear that certain domain-dependent char- 
acteristics such as those we identified in several of the domains we studied 
must still be taken into account in settling on a flaw selection strategy for any 
particular planning domain. 

3    Search Control for Conditional Planning 
Conditional planning is an important extension to traditional planning. Con- 
ditional planners allow for conditional actions with multiple possible out- 
comes and for sensing actions that allow agents to determine the current 
state[l, 5, 7, 3]. A key question in conditional planning is: how many, and 
which of the possible execution failures should be planned for? One cannot, 
in general, plan for all the failures that can be anticipated: there arc simply 
too many. But neither can one ignore all the possible failures, or one will fail 
to produce sufficiently flexible plans. Essentially, this question can be viewed 
as one of search control: which portion of the plan space should be searched 
first, to provide the highest-quality contingency plans? 

La the current project, we developed Mahinur, a probabilistic partial-order 
planner that supports conditional planning with contingency selection; our 
work on this is reported in [10]. Mahinur implements an iterative refinement 
planning algorithm that identifies the contingencies that contribute the most 
to the plan's overall value, and gives priority to the contingencies whose failure 
would have the greatest negative impact. We concentrated on two aspects of 
the problem, namely, planning methods for an iterative conditional planner 
and a method for computing the negative impact of possible sources of failure. 

We conducted experiments with reasoning aboutthe first implementation 
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of Mahinur, and compared its performance to other probabilistic conditional 
planners, notably the C-Buridan [5] system, the best-known alternative for 
partial-order contingency planning. Mahinur differs from C-Buridan and other 
earlier systems in explicitly calculating the expected value of handling alter- 
native contingencies at plan time. Our experiments showed that these calcula- 
tions result an a significant increase in Mahmur'a planning efficiency, relative 
to C-Buridan. We are continuing to work on the Mahinur system, incorporat- 
ing methods for reducing the probability of failure by adding more supporting 
actions, and implementing a much larger real-world domain to use as the basis 
of extended experimental analyses. 

4    Monitor-Selection in Planning 
A further extension to planners is required when agents in situated in dynamic 
environments. There, a central challenge is to be appropriately sensitive to 
changes in its environment. In general, it is too costly to be responsive to 
every environmental feature that the agent knows about. On the other hand, 
an agent that is completely unresponsive may fail to take advantage of cir- 
curutjtances that can improve its plans and/or shorten its planning time con- 
siderably. The need to balance sensitivity to environmental change against 
appropriate stability of the plans being formed is strongly reminiscent of the 
ideas that led to the design of the IRMA architecture and filtering strategy in 
our earlier work [2]. 

In recent work on this project, we have introduced the idea of rationale- 
based monitoring, reported in [15]. In this approach, planning is strongly 
identified as a decision making process and the planning system records the 
rationale for the choices it makes. Even when planning consists mainly in task 
decomposition, it will typically involve choosing between alternatives, and the 
reasons for those choices constitute the plan rationale. The agent can then 
focus its attention on those changes in the environment that would affect the 
truth-value of the planning rationale. 

A novel aspect of our approach is that we not only monitor features of the 
world that affect the current plan, but also features of the world that played a 
role in the decision to select that plan over alternative possibilities. We main- 
tain two sets of monitors: plaü-based and alternative-based. Every time the 
agent needs to make a decision among alternatives, it deliberates and selects 
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a particular plan. The selected plan gives rise to the plan-based monitors. 
At the same time, the alternatives considered give rise to alternative-based 
monitors. As the world state is dynamically changing, the agent remembers 
alternatives that it judged less valuable, monitoring the world state to see if 
that judgement should be changed. We implemented a prototype version of 
rationale-baaed monitoring and conducted preliminary experiments showing 
that it can lead to improved plans without significant overhead. 
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5    Project-Supported Publications1 

1. Eithan Ephrati, Martha E. Pollack, and Marina Milshtein, "A Cost Di- 
rected Planner: Preliminary Report," in Proceedings of the ISih National 
Conference on Artificial Intelligence, pp. 1223-1228, 1996. 

2. David Joslin and Martha E. Pollack, "Is 'Early Commitment' in Plan 
Generation Ever a Good Idea," in Proceedings of the l$th National Con- 
ference on Artificial Intelligence, pp. 1188-1193, 1996. 

3. Martha E. Pollack, David Joslin, and Massimo Paolucci, "Flaw-Selection 
Strategies for Paitial-Order Planning," Journal of Artificial Intelligence 
Research, 6:233-262, 1997. 

4. Nilufer Onder and Martha E. Pollack, "Contingency Selection in Plan 
Generation," in Proceedings of the Fourth European Conference on Plan- 
ning, Toulouse, France, Sept. 1997. 

5. Nilufer Onder and Martha E. Pollack, "Contingency Selection in Plan 
Generation," in 1996 AAAI Fall Symposium on Plan Execution, Boston, 
MA, Nov. 1996. (This is a preliminary version of the previous reference.) 

6. Nilufer Onder and Martha E. Pollack, "Handling Contingency Selection 
Using Goal Values," in 1997 AAAI Workshop on Abstractions, Deci- 
sions, and Uncertainty, Providence, RI, July, 1997. 

7. Yagil Ronen, Daniel Mosse', and Martha E, Pollack "Value-Density Al- 
gorithms for the Deliheration Scheduling Problem," to appear in IEEE 
Expert, 1998. 

8. Manuela M. Veloso, Martha E. Pollack, and Michael T. Cox, "Rationale- 
Based Monitoring for Continuous Planning in Dynamic Environments" 
to appear in Proceedings of the Fourth International Conference on AI 
Planning Systems, June, 1998. 

1The first two papers listed were completed prior to the start date of the current contract, 
and thus do not acknowledge this contract. However, they are both within the scope of the 
current effort, and follow-on work, which was reported when the papers were presented at 
the conference, was done during the current contract period. 
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